Abstract
Carbon nanofiber (CNF) derived from carbonization of bacterial cellulose (BC), with a unique three-dimensional porous nanostructure, has received significant interest in electrochemical applications. In this study, CNF samples were physically activated in CO2 at different temperatures and durations. Raman spectroscopy and FTIR analysis showed that CO2 activation caused hexagonal lattice defects, disorder, and oxygen-related functional groups in an amorphous carbon structure. CNF surface morphology changed after physical activation, reducing fiber diameter to 55 nm and introducing mesopores. Through activation temperature and time adjustments, surface area (870.1 m2/g) and micropore surface area (535.6 m2/g) and pore volume (0.2148 cm3/g) increased. EDX elemental analysis showed that activated CNF had a carbon concentration of > 90 %, while XPS analysis showed surface functional groups like C-C (sp2) and C-C (sp3) hybridization, which could improve electrolyte ion adsorption and accessibility. Electrochemical properties improved owing to CO2 activation. The optimal activation condition of 800 ℃ for 60 min resulted in the highest specific area capacitance of 552 mF cm−2 at 1 mA cm−2. This activated CNF electrode retained capacitance nearly unchanged up to 3,000 cycles. It also achieved the highest energy density of 76.7 mWh cm−2 at 500 mW cm−2. This study demonstrates the efficacy of CO2 physical activation for enhancing the electrochemical properties of CNF electrodes. The findings also highlight the importance of tailoring activation conditions, providing valuable insights for the design of advanced energy storage materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.