Abstract

Soil moisture (SM) data play an important role in agriculture, hydrology, and climate sciences. In this study, we examined the spatial-temporal variability of soil moisture using Soil Moisture Ocean Salinity (SMOS) satellite measurements for Poland from a five-year period (2010–2014). SMOS L2 v. 551 datasets (latitudinal rectangle 1600 × 840 km, centered in Poland) averaged for quarterly (three months corresponding to winter, spring, summer, and autumn) and yearly values were used. The results were analysed with the use of classical statistics and geostatistics (using semivariograms) to acquire information about the nature of anisotropy and the lengths and directions of spatial dependences. The minimum (close to zero) and maximum soil moisture values covered the 0.5 m3 m−3 range. In particular quarters, average soil moisture did not exceed 0.2 m3 m−3 and did not drop below 0.12 m3 m−3; the corresponding values in the study years were 0.171 m3 m−3 and 0.128 m3 m−3. The highest variability of SM occurred generally in winter (coefficient of variation, CV, up to 40%) and the lowest value was recorded in spring (around 23%). The average CV for all years was 32%. The quarterly maximum (max) soil moisture contents were well positively correlated with the average soil moisture contents (R2 = 0.63). Most of the soil moisture distributions (histograms) were close to normal distribution and asymmetric data were transformed with the square root to facilitate geostatistical analysis. Isotropic and anisotropic empirical semivariograms were constructed and the theoretical exponential models were well fitted (R2 > 0.9). In general, the structural dependence of the semivariance was strong and moderate. The nugget (C0) values slightly deceased with increasing soil moisture while the sills (C0 + C) increased. The effective ranges of spatial dependence (A) were between 1° and 4° (110–440 km of linear distance). Generally, the ranges were greater for drier than moist soils. Anisotropy of the SM distribution exhibited different orientation with predominance from north-west to south-east in winter and spring and changed for from north-east to south-west or from north to south in the other seasons. The fractal dimension values showed that the distribution of the soil moisture pattern was less diverse (smoother) in the winter and spring, compared to that in the summer and autumn. The soil moisture maps showed occurrence of wet areas (soil moisture > 0.25 m3 m−3) in the north-eastern, south-eastern and western parts and dry areas (soil moisture < 0.05 m3 m−3) mainly in the central part (oriented towards the south) of Poland. The spatial distribution of SM was attributed to soil texture patterns and associated with water holding capacity and permeability. The results will help undertake appropriate steps to minimize susceptibility to drought and flooding in different regions of Poland.

Highlights

  • Soil moisture (SM) data play an important role in agriculture, hydrology, and climate sciences

  • The soil moisture averaged for the entire five-year period was 0.151 m3 m−3, with the highest value in 2010 (0.171 m3 m−3), which dropped to 0.128 m3 m−3 in 2012

  • As indicated by coefficient of variation (CV), the highest variability of SM occurred generally in winter and the lowest value of approx. 23% was noted in spring

Read more

Summary

Introduction

Soil moisture (SM) data play an important role in agriculture, hydrology, and climate sciences. Soil moisture is a crucial factor for plant growth conditions [1,2], crop water stress [3,4], irrigation scheduling, and soil erosion assessments [5,6]. Initial moisture conditions are an important factor in the management of water resources [7] through influence on the splitting (re-distribution) of precipitation into runoff, infiltration, and ground water recharge. These discharges are the most accessible fresh water resources [7]. Many researchers indicate that SM indirectly influences other significant soil properties, including aeration, mechanical impedance, and temperature that affect numerous soil and plant functions [12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call