Abstract

Plastic slip deformations of tricrystals with simplified geometries are numerically analyzed by a FEA-based crystal plasticity code. Accumulation of geometrically necessary (GN) dislocations, distributions of the total slip, plastic work density and GN dislocations on slip systems, as well as some indices for the intensity of slip multiplication are evaluated. Results show that coexistence of GN dislocations on different slip systems is prominent at triple junctions of grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.