Abstract

Postoperative ileus and chronic intestinal pseudo-obstruction are intestinal motility disorders that can compromise bowel function resulting in a significant reduction in quality of life and prolonged hospital stays. While medication and nutritional support provides relief for some patients, a significant patient population remains untreated. Therefore, alternative treatment options are required. A novel framework that enables small intestine pacing and video mapping of the contractile response was developed. Pacing pulse parameters (pulse-period: 2.7, 10 s, pulse-width: 100, 400 ms, and pulse-amplitude: 4, 6, 8 mA) were systematically varied to investigate the effect of pacing on the small intestine contractility. The contractile response was quantified by computing the strain of the intestinal diameter at the pacing site. The framework was applied in vivo on porcine jejunal loops (n=4) where segmental contractions were induced in response to pacing pulses. Strain increased with increasing pulse-amplitude and pulse-width, while pacing at a period of 2.7 s elicited higher contractile strains compared to pacing at a period of 10 s at all settings (e.g., -0.18 ± 0.06 vs 0.12 ± 0.06 at 8 mA, 400 ms). For a pulse-width of 100 ms, the contractile strain continued to increase with increasing pulse-amplitude, while the induced strain was comparable for all pulse-amplitudes when paced with high pulse-width (400 ms). Therefore, pacing is an effective tool in modulating the intensity of segmental contractions.Clinical Relevance- Different pacing parameters can define contraction intensity and frequency in the small intestine. This is of therapeutic potential for treating motility disorders such as post-operative ileus and chronic intestinal pseudo-obstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call