Abstract

On-line fault detection of nonlinear processes involving dynamic dependencies and similar/overlapping fault signatures, is a fairly challenging and daunting task. Early detection and unambiguous diagnosis require that the monitoring approaches are able to deal with these daunting features. This paper compares two broad multivariate statistical approaches proposed in the literature for the detection task: (i) nonlinear transformations to generate linear maps and their dynamic variants in high dimensional feature space, as exemplified by kernel principal component analysis and dynamic kernel principal component analysis, and (ii) nonlinear scaling of the data to promote better self aggregation of data classes and hence improved discrimination, as exemplified by correspondence analysis. Using the Tennessee Eastman benchmark problem, we compare the performance of the above methods with respect to the known metrics such as detection delays, false alarm rates (Type I error) and missed detection rates (Type II error). As well, we compare the methods on the basis of computational cost and provide summarizing remarks on the ease of deployment and maintenance of such approaches for plant-wide fault detection of complex chemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.