Abstract

In order to detect the incipient faults of nonlinear industrial processes effectively, this paper proposes an enhanced kernel principal component analysis (KPCA) method, called multi-block probability related KPCA method (DMPRKPCA). First of all, one probability related nonlinear statistical monitoring framework is constructed by combining KPCA with Kullback Leibler divergence (KLD), which measures the probability distribution changes caused by small shifts. Second, in view of the problem that the traditional KLD ignores the dynamic characteristic of process data, the dynamic KLD component is designed by applying the exponentially weighted moving average approach, which highlights the temporal data changes in the moving window. Third, considering that the holistic KLD component may submerge the local statistical changes, a multi-block modeling strategy is designed by dividing the whole KLD components into two sub-blocks corresponding to the mean and variance information, respectively. Case studies on one numerical system and the simulated chemical reactor demonstrate the superiority of the DMPRKPCA method over the conventional KPCA method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.