Abstract
In view of the fact that the production process of Polyvinyl chloride (PVC) polymerization has more fault types and its type is complex, a fault diagnosis algorithm based on the hybrid Dynamic Kernel Principal Component Analysis-Fisher Discriminant Analysis (DKPCA-FDA) method is proposed in this paper. Kernel principal component analysis and Dynamic Kernel Principal Component Analysis are used for fault diagnosis of Polyvinyl chloride (PVC) polymerization process, while Fisher Discriminant Analysis (FDA) method was adopted to make failure data for further separation. The simulation results show that the Dynamic Kernel Principal Component Analyses to fault diagnosis of Polyvinyl chloride (PVC) polymerization process have better diagnostic accuracy, the Fisher Discriminant Analysis (FDA) can further realize the fault isolation, and the actual fault in the process of Polyvinyl chloride (PVC) polymerization production can be monitored by Dynamic Kernel Principal Component Analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.