Abstract
Atrial Fibrillation (AF) is most common cardiac arrhythmia. It is associated with increased risk of stroke, heart failure and sudden cardiac death. Catheter ablation is a treatment used to control AF and has had suboptimal success for patients with persistent AF, which is primarily maintained by rotors outside of the pulmonary veins (PV) region. The pivot point (core) of the rotor is considered an efficient target for ablation. Currently available electro-anatomical mapping systems cannot accurately predict the exact location of the pivot point of rotors outside of the PV region, so there is a need for novel approaches to accurately identify and distinguish sites for ablation. Recently, a multiscale frequency (MSF) technique was developed for accurate identification of the pivot point of rotors and validated using optical mapping experiments in exvivo rabbit hearts, where electrical activity can be directly visualized. However, the nature of optical signals and its spatial resolution are very different from clinical intracardiac electrograms (iEGM). Here we extend the MSF approach to 3D iEGM and compare its prediction with the traditional dominant frequency (DF) approach, using Pearson's correlation and earth mover's distance methods. Our results demonstrate that the similarity between MSF and DF are high in some regions, but very low in other spatial regions of the human atria. This indicates the inconsistency in the traditional DF approach in identifying pivot points and identifying such low similarity regions can be used to find sites for successful ablation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.