Abstract

The multi-layered structure of a rare-earth barium copper oxide (REBCO) tape causes the resistance of Cu/Ag and Ag/REBCO interfaces (interface resistance), which is a major factor of the resistance of tape-to-tape joints (joint resistance). Interface resistance has been evaluated by the current transfer length (CTL) method. However, induced damage of a part of the measured REBCO tape in this method may cause variations in estimated values, as well as making the tape itself unable to be reused for applications. Therefore, this study proposes the contact-probing CTL method, which is a nondestructive evaluation method of interface resistance. We evaluated the interface resistance in a REBCO tape by the conventional CTL method and the contact-probing CTL method. The estimated interface resistance values by the contact-probing CTL method were more reliable and less varied than those by the conventional method. We also evaluated the temperature dependence of the interface resistance, which is important to analyze joint resistance for various applications of REBCO tapes. The result showed that the interface resistance remained constant at different temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.