Abstract
The global energy system is undergoing significant changes, including a shift in energy generating technologies to more renewable energy sources. However, the dependence of renewable energy sources on local environmental conditions could also increase disruptions in service through exposures to compound, extreme weather events. By fusing three diverse datasets (operations and maintenance tickets, weather data, and production data), this analysis presents a novel methodology to identify and evaluate performance impacts arising from extreme weather events across diverse geographical regions. Text analysis of maintenance tickets identified snow, hurricanes, and storms as the leading extreme weather events affecting photovoltaic plants in the United States. Statistical techniques and machine learning were then implemented to identify the magnitude and variability of these extreme weather impacts on site performance. Impacts varied between event and non-event days, with snow events causing the greatest reductions in performance (54.5%), followed by hurricanes (12.6%) and storms (1.1%). Machine learning analysis identified key features in determining if a day is categorized as low performing, such as low irradiance, geographic location, weather features, and site size. This analysis improves our understanding of compound, extreme weather event impacts on photovoltaic systems. These insights can inform planning activities, especially as renewable energy continues to expand into new geographic and climatic regions around the world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.