Abstract
Abstract Compared to traditional drought events, flash droughts evolve rapidly during short-term extreme atmospheric conditions, with a lasting period of one pentad to several weeks. There are two main categories of flash droughts: the heat wave flash drought (HWFD), which is mainly caused by persistent high temperatures (heat waves), and the precipitation deficit flash drought (PDFD), which is mainly triggered by precipitation deficits. The authors’ previous research focused on the characteristics and causes of flash drought based on meteorological observations and Variable Infiltration Capacity (VIC) model simulations in a humid subtropical basin (Gan River basin, China). In this study, the authors evaluated the downscaled phase 5 of the Coupled Model Intercomparison Project (CMIP5) models’ simulations, coupled with the VIC model (CMIP5–VIC) in reproducing flash droughts in a humid subtropical basin in China. Most downscaled CMIP5–VIC simulations can reproduce the spatial patterns of flash droughts with respect to the benchmarks. The coupled models fail to readily replicate interannual variation (interannual pentad change), but most models can reflect the interannual variability (temporal standard deviation) and long-term average pentads of flash droughts. It is difficult to simultaneously depict both the spatial and temporal features of flash droughts within only one coupled model. The climatological patterns of the best multimodel ensemble mean are close to those of the all-model ensemble mean, but the best multimodel ensemble mean has a minimal bias range and relatively low computational burden.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have