Abstract

AbstractThe Tarim River, the largest inland river in China, sits in the Tarim River Basin (TRB), which is an arid area with the ecosystem primarily sustained by water from melting snow and glaciers in the headstream area. To evaluate the pressures of natural disasters in this climate‐change‐sensitive basin, this study projected flash droughts in the headstream area of the TRB. We used the variable infiltration capacity (VIC) model to describe the hydrological processes of the study area, Markov chain Monte Carlo to quantify the parameter uncertainty of the VIC model. Ten downscaled general circulation models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to drive the VIC model, and the standardized evaporative stress ratio was applied to identify flash droughts. The results demonstrated that the VIC model after Bayesian parameters uncertainty analysis can efficiently describe the hydrological processes of the study area. In the future (2021–2100), compared with the plain region, the alpine region has higher flash drought frequency and intensity. Compared with the historical period (1961–2014), the frequency, duration, and intensity of flash droughts tend to increase throughout the study area, especially for the alpine area. Moreover, based on variance decomposition, CMIP6 model is the most important uncertainty source for flash drought projection, followed by the shared socioeconomic pathway of climate change scenario and VIC model parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.