Abstract
Abstract The seabed in the ports needs to be regularly cleaned from the marine sediments for safe navigation. Sediments contaminated by tributyltin (TBT) are environmentally harmful and require treatment before recycling. Treatment methods include leaching, stabilisation and solidification to remove toxic chemicals from the sediments and improve their strength for reuse in the construction works. This study evaluated the effects of adding three different binder components (cement, cement kiln dust (CKD) and slag) to treat sediment samples collected in the port of Gothenburg. The goal of this study is to assess the leaching of TBT from the dredged marine sediments contaminated by TBT. The various methods employed for the treatment of sediments include the application of varied ratios of binders. The project has been performed by the Swedish Geotechnical Institute (SGI) on behalf of the Cementa (HeidelbergCement Group) and Cowi Consulting Group, within the framework of the Arendal project. An experiment has been designed to evaluate the effects of adding CKD while reducing cement and slag for sediment treatment. Methods that have been adopted include laboratory processing of samples for leaching using different binder combinations, followed by statistical data processing and graphical plotting. The results of the experiment on leaching of TBT for all samples are tested with a varied ratio of cement, slag, CKD and water. Specimens with added binders ‘cement/CKD’ have demonstrated higher leaching compared to the ratio ‘cement/slag/CKD’ and ‘cement/slag’. The ‘CKD/slag’ ratio has presented the best results followed by the ‘cement/slag/CKD’, and can be used as an effective method of s/s treatment of the sediments. The results have shown that the replacement of cement and slag by CKD is effective at TBT leaching for the treatment of toxic marine sediments contaminated by TBT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.