Abstract
The influences of polyether sulfone (PES) microplastics and different structures aromatic carboxylic acids such as benzoic acid (BA), phthalic acid (PA), hemimellitic acid (HA), and 1-naphthoic acid (1-NA) on the performances and characteristics of anaerobic granular sludge as well as the microbial community were investigated. The chemical oxygen demand (COD) removal efficiency was the highest in the experimental group with 40 mg/L BA, reaching 90.1%. The inhibitory effect of aromatic carboxylic acids addition on the 2,3,5-triphenyltetrazolium chloride (TTC) activity was more obvious than that on 2-para (iodo-phenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) activity. Compared with the control group (only 0.5 g/L PES microplastics, 60.6 mg TF·g TSS·h−1), the inhibition effect of TTC activity was 32.5 mg TF·g TSS·h−1 and 44.3 mg TF·g TSS·h−1 in the 40 mg/L HA and 40 mg/L 1-NA experimental groups, respectively. When aromatic carboxylic acids were added, the activities of acetate kinase and coenzyme F420 in the anaerobic granular sludge decreased. The excitation-emission matrix (EEM) fluorescence spectra indicated that loosely bound extracellular polymeric substances (LB-EPS) began to decay. After the addition of different aromatic carboxylic acids, the CC and CH functional groups of the anaerobic granular sludge increased, suggesting that aromatic carboxylic acids migrated to the surface of anaerobic granular sludge, such a transfer would lead to changes in anaerobic granular sludge performance. High-throughput sequencing technology showed that the dominant microbial communities in the anaerobic granular sludge were Proteobacteria, Methanothrix, and Methanomicrobia. After the addition of aromatic carboxylic acids, the relative abundances of Proteobacteria, Methanobacterium, and Methanospirillum increased. In the presence of PES, 1-NA had the most serious toxicity to the anaerobic granular sludge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.