Abstract
Objectives: To quantify the clinical value of integrating a commercially available artificial intelligence (AI) algorithm for intracranial aneurysm detection in a screening setting that utilizes cranial magnetic resonance imaging (cMRI) scans acquired primarily for other clinical purposes. Methods: A total of 907 consecutive cMRI datasets, including time-of-flight-angiography (TOF-MRA), were retrospectively identified from patients unaware of intracranial aneurysms. cMRIs were analyzed by a commercial AI algorithm and reassessed by consultant-level neuroradiologists, who provided confidence scores and workup recommendations for suspicious findings. Patients with newly identified findings (relative to initial cMRI reports) were contacted for on-site consultations, including cMRI follow-up or catheter angiography. The number needed to screen (NNS) was defined as the cMRI quantity that must undergo AI screening to achieve various clinical endpoints. Results: The algorithm demonstrates high sensitivities (100% for findings >4 mm in diameter), a 17.8% MRA alert rate and positive predictive values of 11.5–43.8% (depending on whether inconclusive findings are considered or not). Initial cMRI reports missed 50 out of 59 suspicious findings, including 13 certain intradural aneurysms. The NNS for additionally identifying highly suspicious and therapeutically relevant (unruptured intracranial aneurysm treatment scores balanced or in favor of treatment) findings was 152. The NNS for recommending additional follow-/workup imaging (cMRI or catheter angiography) was 26, suggesting an additional up to 4% increase in imaging procedures resulting from a preceding AI screening. Conclusions: AI-powered routine screening of cMRIs clearly lowers the high risk of incidental aneurysm non-reporting but results in a substantial burden of additional imaging follow-up for minor or inconclusive findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have