Abstract

The problem of phase calibration of the matrix simulator is considered. The phase error at the point of reception is divided into systematic and random. Analytic relationships are obtained that allow one to evaluate and compensate for the systematic error in the calibration of the phases of the signals emitted by the matrix simulator, caused by the geometric separation of the phase centers of the antenna and the antenna of the calibration receiver. The random component of the phase error is compensated by the calibration algorithm. Analytical relations are obtained for determining the compensation error due to the non-precise determination of the coordinates of the emitting part of the matrix simulator and the phase center of the antenna of the measuring receiver. The magnitude of this error is determined for the typical location of the antennas of the device under investigation, the measuring receiver and the matrix simulator when performing semi-realistic simulation. The description of the laboratory stand of the developer of the matrix imitator is given. The obtained theoretical results are confirmed experimentally at the booth of the matrix imitator developer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.