Abstract
The effectiveness and feasibility of urban planning are significantly influenced by the supply capacity and net value of ecosystem services offered by blue–green–grey infrastructure. This study used a cost–benefit analysis (CBA) to ascertain and contrast the ecological net present value (NPV) of the blue–green–grey infrastructure in three distinct functional areas (a park, a square, and a residential district) under 12 scenarios during the period characterized by representative summer temperature, which we refer to as “warm periods”. Our findings suggest varied optimal scenarios for the three functional areas. For the park, the most beneficial scenario involved an integrated approach with a 5% increase in grey infrastructure and a 5% replacement of green infrastructure with grey. This scenario yielded an NPV of 7.31 USD/m2 in a short-term life span (25 years) and 11.59 USD/m2 in a long-term life span (150 years). In the case of the square, the introduction of an additional 5% of blue infrastructure led to the highest NPV of ecological benefits, resulting in gains of 1.49 USD/m2 for a short-term life span and 2.18 USD/m2 for a long-term life span. For the residential district, the scenario where 5% of green infrastructure was replaced with blue infrastructure resulted in the highest NPV across all scenarios, with values of 8.02 USD/m2 and 10.65 USD/m2 for a short- and long-term life span, respectively. Generally, the most beneficial scenario yielded greater benefits over the long term compared with short-term projects. By quantifying the ecological benefits of different blue–green–grey infrastructure combinations, our research provides theoretical support for optimizing both the ecological and economic value of urban infrastructures. This study could benefit academics, practitioners, and policymakers in urban planning in optimizing the allocation of the blue–green–grey infrastructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.