Abstract

Seasonal fishing closures are often used in fisheries management to conserve overfished stocks. As one of the unintended consequences, fishermen often contend for maximizing catches immediately after reopening fisheries. The resultant large catch landings in a short time period (i.e., pulse fishing) may undermine the benefit of closure. We implemented an end-to-end model OSMOSE-JZB (Object-oriented Simulator of Marine ecOSystem Exploitation OSMOSE) modelling ecosystem in the Jiaozhou Bay located in China to evaluate the impact of pulse fishing on the effectiveness of seasonal closure at levels of fish community, population, and individual. Our study demonstrated that the three-month closure was successful in conserving fish stocks. There were small variations on ecological indicators (i.e., total biomass of the community, mean trophic level of the community, mean trophic level of the catch, and Shannon-Wiener biodiversity index) when pulse fishing occurred. Pulse fishing seemed not to result in a great shift in community structure. Compared to other species, the biomass of two large predatory fishes were more susceptible to pulse fishing. Pulse fishing could change the pressure of predators to fish stocks via food webs, especially for young individuals. Our simulations indicate that we can improve the effectiveness of seasonal closure by managing pulse fishing. Although the results derived in this study may be specific to the target ecosystem, the general approach is applicable to other ecosystems when evaluating fishing impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call