Abstract

Chemical measures for the biomass, community structure, nutritional status, and metabolic activities of microbes in biofilms attached to detrital or sediment surfaces based on analysis of components of cells and extracellular polymers represent a quantitative and sensitive method for the analysis of predation. These methods require neither the quantitative removal of the organisms from the surfaces nor the efficient culture of each group of microbes for analysis of predation effects on the biofilm. The biomass of microbes can be determined by measuring the content of cellular components found universally in relatively constant amounts. If these components have a high natural turnover or are rapidly lost from viable cells, they can be utilized to measure the viable cell mass. The membrane phospholipids have a naturally high turnover, are found in all cellular membranes, are rapidly hydrolyzed on cell death, and are found in reasonably constant amounts in bacterial cells as they occur in nature. Estimates of the viable biomass by phospholipid content correspond to estimates from the content of muramic acid, ATP, several enzyme activities, direct cell counts, and in some cases viable counts of subsurface sediments. The analysis of the ester-linked fatty acids of the phospholipids (PLFA) using capillary gas chromatography/mass spectrometry (GC/MS) provides sufficient information for the detection of specific subsets of the microbiota based on patterns of PLFA. With this technique shifts in community structure can be quantitatively assayed. Some of the microbiota form specific components such as poly beta-hydroxyalkanoate (PHA) under conditions of unbalanced growth. Others form polysaccharide glycocalyx when subjected to mechanical or chemical stress. The combination of analysis of phospholipids, PLFA, PHA, and glycocalyx provides a definition of the biomass, community structure, and metabolic status of complex microbial communities. These methods involve chromatographic separation and analysis so rates of incorporation or turnover into specific components can be utilized as measures of metabolic activities. With these methods it has proved possible to show that amphipod grazing can induce shifts in biofilm community structure, nutritional status, and metabolic activities. With this technology it proved possible to show resource partitioning amongst sympatric detrital feeding amphipods, prey specificity of feeding of benthic microvores, effects of sedimentary microtopology on predation, and shifts in the microbiota by exclusion of top epibenthic predators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call