Abstract
The increasing displacement of synchronous generators with renewable resources such as wind and solar via power electronic interfaces causes a reduction in short-circuit strength and weak grid issues. The variation and uncertainty of renewable energy increase challenges for identifying weak grid conditions. This paper proposes an efficient method to analyze the impact of uncertain renewable energy on grid strength. The proposed method uses the probabilistic collocation method (PCM) to approximate the results of grid strength assessment under uncertain renewable generation, in order to reduce computational burden without compromising result accuracy when compared with traditional Monte Carlo simulation (MCS). To improve the accuracy of the approximation results, the proposed method integrates the K-means clustering technique with PCM to select the approximation samples of input variables. The efficacy of the proposed method is demonstrated by comparison with MCS on the modified IEEE 9-bus system and modified IEEE 39-bus system with multiple renewable generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.