Abstract
This study evaluates the application of an expert opinion-based fuzzy method for reservoir operation in humid subtropical climate/hot-summer Mediterranean climatic classes (Cfa/Csa in the Köppen–Geiger climate classification system), which are characterized by humid subtropical to Mediterranean conditions with ample rainfall and seasonal water availability challenges. Effective reservoir management in these regions is critical for balancing water storage and downstream release and maintaining ecosystem health under variable hydrological conditions. The performance of the fuzzy method was compared to two meta-heuristic algorithms: gravitational search algorithm (GSA) and shuffled frog leaping algorithm (SFLA). System performance was assessed using key indices such as the reliability index as a measure of meeting water demands. The fuzzy method achieved the highest reliability index of 0.690, outperforming GSA (0.677) and SFLA (0.688), demonstrating its superior ability to ensure consistent water supply downstream. The fuzzy method, leveraging expert knowledge, not only enhanced downstream water supply reliability but also reduced computational time compared to the meta-heuristic approaches. The incorporation of expert opinions provides a practical, robust, and efficient framework for reservoir management in challenging climate conditions such as Cfa/Csa classes. Additionally, the fuzzy solution demonstrated superior adaptability to diverse hydrological conditions, balancing ecological and water supply needs effectively. These findings highlight the potential of using expert opinions to support sustainable reservoir operations by achieving optimal trade-offs between competing objectives and addressing challenges in water resource management under varying climatic conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have