Abstract

Human activities have caused significant disturbances to the natural environment, leading to a rise in temperatures that exceed pre-industrial levels in recent times. This has been primarily attributed to the recent rise in greenhouse gas (GHG) emissions. In order to address the increasing temperatures, it is crucial to investigate energy-efficient manufacturing methods. While traditional manufacturing (TM) methods such as sand casting have the ability to produce a wide variety of products, they are known to be energy intensive. In contrast, metal additive manufacturing (MAM), including material extrusion additive manufacturing (MEAM), is considered to be more energy-efficient as it enables the production of intricate, lightweight, and near-net-shaped products, while also streamlining the manufacturing process. Despite these advantages, there is limited scientific evidence supporting the claims of energy efficiency, especially for MEAM methods, such as the atomic diffusion additive manufacturing (ADAM) process. This study aims to evaluate the feasibility of conducting a comprehensive life cycle assessment (LCA) for MEAM, particularly the ADAM process, in comparison to sand casting. Theoretical results imply that MEAM-ADAM requires an additional 71.04 kWh/kg and 16.57 CO2 equivalent (CO2-eq) of energy to manufacture one kilogram of precipitation-hardened stainless steel (17-4 PH SS) when compared to sand casting. Therefore, the findings of this preliminary study indicate the need for future research to develop a comprehensive LCA model for MEAM, which should include a comparison of the process with other metalworking processes such as turning, milling, and investment casting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call