Abstract
Reduction or prevention of scaling is commonly achieved by injecting scaling inhibitors into the geothermal circuit. Inhibitor-efficiency tests can be carried out in static or dynamic experiment set-ups allowing measurements at high pressures and high temperatures (HPHT). For these measurements, suitable analytical methods have to be selected depending on the nature of the scales and the specifics of the related sensors in a HPHT environment. In this study, a calcite scaling inhibitor was evaluated in static batch tests at HPHT conditions with respect to its inhibitory efficiency as well as its degradation behaviour. The inhibitor efficiency significantly decreases in comparison to ambient p,T-conditions. In a long-term stability experiment, a delayed partial degradation of the inhibitor at HPHT conditions could be observed.
Highlights
Temperature and pressure changes during production of geothermal fluids can lead to oversaturation of dissolved minerals and to mineral precipitation
When applied in geothermal installations, the effectivity of these commonly used inhibitors can decrease considerably due to the special physico-chemical conditions of geothermal fluids such as high pressure, high temperature, high salinity or content of corrosive or scale-forming chemicals
We investigated calcite inhibitors based on polycarboxylates with regard to their potential for geothermal application
Summary
Temperature and pressure changes during production of geothermal fluids can lead to oversaturation of dissolved minerals and to mineral precipitation. When applied in geothermal installations, the effectivity of these commonly used inhibitors can decrease considerably due to the special physico-chemical conditions of geothermal fluids such as high pressure, high temperature, high salinity or content of corrosive or scale-forming chemicals. These conditions have to be taken into account when the efficiency of scaling inhibitors for geothermal application is tested. Established scaling inhibitors based on phosphates or phosphonates are known to have toxic effects on aquatic organisms or cause eutrophication problems (Hasson et al 2011; Lattemann and Höpner 2008).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.