Abstract
The composition of oil sands tailings is a complex mixture of water, fine clay, sand, silt, and residual bitumen that remains after the extraction of bitumen. Effective tailings disposal management requires an understanding of the mechanisms controlling water movement, surface settlement rates and extents (hydraulic conductivity and compressibility), and strength variation with depth. This investigation examines the self-weight consolidation behavior of oil sands tailings, typically assessed by utilizing large strain consolidation (LSC) methods such as the multi-step large strain consolidation (MLSC) test and seepage-induced consolidation test (SICT). These methods, however, are time consuming and often take weeks or years to complete. As an alternative, centrifuge testing, including both geotechnical beam type and benchtop devices, was utilized to evaluate the consolidation behaviors of three untreated high water content oil sands tailing slurries: two high-plasticity fluid fine tailing (FFT) samples and one low plasticity FFT. The centrifuge-derived compressibility data closely matched the LSC testing compressibility data within the centrifuge stress range. However, the hydraulic conductivity obtained from centrifuge testing was up to an order of magnitude higher than the LSC test results. Comparing centrifuge and large strain modeling results indicates that centrifuge test data demonstrate average void ratios 10–33% lower than those predicted by simulations using LSC parameters, highlighting a notable deviation. To examine the scale effect on result accuracy, validation tests indicated that the benchtop centrifuge (BTC) yielded comparable results to the geotechnical beam centrifuge (GBC) for the same prototype, saving time, resources, and sample volumes in the assessment of tailings consolidation behavior. These tests concluded that the small radius of the benchtop centrifuge had a minimal impact on the results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have