Abstract

Abstract In this study, the Gaussian white noise and the differential Poisson of the Stochastic Differential Equation(SDE) with distributed jump are examined. Using Ito integral as a tool, a one step Euler-Maruyama (E-M) method is considered for the approximation of Stochastic Dependent Poisson Analysis (SDPA) in finance. The Deterministic Quadrature Rule (DQR) was used in the establishment of the method for easy examination of the Black-Scholes asset price model for stock investors; MATLAB package was used for simulation of the method. However the Mean Absolute Error (MAE) as well as Strong Order of Convergence (SOC) method was considered to ascertain its usability. The result clearly shows entry points and exit points of stock market. Consequently, the findings of this research is strongly recommended. Keywords: Euler-Maruyama method, Stochastic differential equation, Ito integral, Poisson distributed jump, Random variables, Deterministic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.