Abstract
The catalytic dehydration of ethanol is a potential alternative route to synthesize ethylene apart from the traditional method which depends on fossil fuels. This report successfully prepared modified ZSM-5 with mesopores using desilication methods to enhance ethanol catalytic dehydration performance and ethylene production at lower temperature. The modified zeolite have the external surface area increased by 3.5 times and a higher dehydration efficiency compared with the original sample especially at temperatures below 220°C. Increasing reaction temperatures and gas houly space velocity (GHSV) increased the dehydration efficiency while increasing the inlet ethanol concentration had opposite effect. Significantly, the ethanol conversion over modified zeolite remained above 90 % when the GHSV increased to 36000 h‑1 after the time-on-stream of 24 h.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have