Abstract
The catalytic ethanol dehydration of ethanol over the solvothermal-derived alumina catalysts was investigated in this study. First, alumina catalysts were synthesized by the solvothermal methods to obtain three different phase composition of alumina catalysts including γ-phase (G–Al), χ-phase (C–Al) and equally mixed χ–γ phases (M–Al). Then, all catalysts were modified with boron (G–Al–B, C–Al–B and M–Al–B). It was found that the boron modification increased the amounts of total acid sites and the ratio of weak to strong acid sites (WSR). The catalytic activity and product selectivity of six catalysts via catalytic ethanol dehydration at 200, 300, and 400 °C were measured. For all catalysts, it revealed that ethanol conversion increased with increased temperatures from 200 to 400 °C. At 200–300 °C, the unmodified catalysts tended to exhibit the higher catalytic activity than the boron-modified catalysts. However, at high temperature (400 °C), the boron modification tended to increase the catalytic activity, especially for the M–Al–B catalyst (complete ethanol conversion at 400 °C). Considering ethylene production, the M–Al–B exhibited the highest ethylene yield among other catalysts with 92% at 400 °C. For diethyl ether, it was observed that the M–Al catalyst gave the highest diethyl ether yield of 57% at 300 °C. This is because the boron modification increased the amounts of total acid sites, which can promote the production of ethylene, while this is not preferable for diethyl ether production, which is favored by weak acid sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.