Abstract

Abstract Kaiman filter theory and autoregressive time series are used to map sea level height anomalies in the tropical Pacific. Our Kalman filters are implemented with a linear state space model consisting of evolution equations for the amplitudes of baroclinic Kelvin and Rossby waves and data from the Pacific tide gauge network. In this study, three versions of the Kalman filter are evaluated through examination of the innovation sequences, that is, the time series of differences between the observations and the model predictions before updating. In a properly tuned Kalman filter, one expects the innovation sequence to be white (uncorrelated, with zero mean). A white innovation sequence can thus be taken as an indication that there is no further information to be extracted from the sequence of observations. This is the basis for the frequent use of whiteness, that is, lack of autocorrelation, in the innovation sequence as a performance diagnostic for the Kalman filter. Our long-wave model embodies the c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call