Abstract
In this paper, new schemes have been proposed for the estimation of the additive white Gaussian noise (AWGN) channel with intersymbol interference (ISI) in an iterative equalization and decoding system using low-density parity check (LDPC) codes. This article explores the use of the least squares algorithm in various scenarios. For example, the impulse response of the AWGN channel h was initially estimated using a training sequence. Subsequently, the impulse response was calculated based on the training sequence and then re-estimated once using the sequence estimated from the output of the LDPC decoder. Lastly, the impulse response was calculated based on the training sequence and re-estimated twice using the sequence estimated from the output of the LDPC decoder. Comparisons were made between the performances of the three mentioned situations, with the situation in which a perfect estimate of the impulse response of the channel is assumed. The performance analysis focused on how the bit error rate changes in relation to the signal-to-noise ratio. The BER performance comes close to the scenario of having a perfect estimate of the impulse response when the estimation is performed based on the training sequence and then re-estimated twice from the sequence obtained from the output of the LDPC decoder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.