Abstract
Objective: The main objective of this study was to compare lactate thresholds and aerobic capacity from a graded-intensity exercise test (GXT) for near-infrared spectroscopy measurements in healthy, untrained individuals and highly trained athletes. Methods: This study included 29 untrained students (13 females) and 27 highly trained speed skaters (13 females). A maximal effort GXT was performed on a cycloergometer. The lactate-based aerobic and anaerobic thresholds, and the corresponding thresholds for muscle oxygen saturation (SmO2), were determined. Results: The power values determined for all thresholds were significantly higher in female and male speed skaters compared to male and female college students. SmO2 at anaerobic thresholds was significantly lower in female speed skaters than in female students. Both female and male skaters showed greater changes in SmO2 after the GXT compared to students. The recovery did not significantly differ between groups within gender. There was a significant positive correlation in females between the rate of muscle reoxygenation and VO2max power (r = 0.610). In speed skaters, the rate of muscle reoxygenation was not significantly higher than students and correlated positively with VO2max (r = 0.449). Conclusions: The SmO2 at the exercise thresholds, during and after maximal exercise, depends on the training status of the individual. The participants with a higher physical fitness level showed greater decreases in ΔSmO2 at the AT level, as well as after maximal exercise. SmO2 corresponding to the well-established exercise thresholds may be applied to guide training prescription. The rate of muscle reoxygenation after a GXT was also dependent on the aerobic capacity of the participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.