Abstract

Abstract An improved method for estimating the directional spectrum of linear surface gravity waves from in Situ observations is presented. The technique, a refinement and extension of the inverse method of Long and Hasselmann, is applicable to multicomponent wave measurements at fixed locations in constant or slowly varying depth water. On a frequency band by frequency band basis, an estimate of the directional distribution of wave energy S(θ) is obtained by minimizing a roughness measure of the form ∫dθ[d2S(θ)/dθ2]2 subject to the constraints: (i) S(θ) is nonnegative with unit integral, (ii) S(θ) fits the data within a chosen statistical confidence level, and (iii) S(θ) is zero on any directional sectors where energy levels are always relatively low because of the influence of geographic surroundings. The solution to this inverse problem is derived through a variational formulation with Lagrange multipliers. A series of simulations using the new estimator show the fundamental limitations of sparse array...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.