Abstract
Abstract The spectra of linear gravity waves generated by a time-varying tropospheric thermal forcing representing organized convection are compared to the spectra of stratospheric gravity waves generated by organized convection in a fully nonlinear two-dimensional squall line simulation. The resemblance between the spectra in the two simulations suggests that stratospheric gravity waves above convection can be understood primarily in terms of the linear response to a time- and space-dependent thermal forcing. In particular, the linear response to thermal forcing accounts for the correlation between the dominant vertical wavelength of the stratospheric waves and the depth of the tropospheric convection as well as the the fact that the dominant frequency of the stratospheric waves is the same as the frequency of oscillation of the main convective updraft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.