Abstract
Abstract Power spectral densities (PSDs) of mesoscale fluctuations of temperature and rate of change of temperature (heating–cooling rate) due to a spectrum of stratospheric gravity waves are derived using canonical spectral forms based on observations and linear gravity wave theory. The parameterization developed here assumes a continuous distribution of horizontal wave phase speeds, as opposed to a previous spectral parameterization in which all waves were assigned stationary ground-based phase speeds. Significantly different heating–cooling rate PSDs result in each case. The differences are largest at small horizontal scales, where the continuous phase-speed parameterization yields heating–cooling rate PSDs that are several orders of magnitude smaller than in the stationary phase-speed parameterization. A simple Monte Carlo method is used to synthesize randomly phased temperature perturbation time series within tagged air parcels using either spectral parameterization. These time series are incorporate...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.