Abstract
In this paper, we consider parameter estimation, kink points testing and statistical inference for a longitudinal multi-kink expectile regression model with nonignorable dropout. In order to accommodate both within-subject correlations and nonignorable dropout, the bias-corrected generalized estimating equations are constructed by combining the inverse probability weighting and quadratic inference function approaches. The estimators for the kink locations and regression coefficients are obtained by using the generalized method of moments. A selection procedure based on a modified BIC is applied to estimate the number of kink points. We theoretically demonstrate the number selection consistency of kink points and the asymptotic normality of all estimators. A weighted cumulative sum type statistic is proposed to test the existence of kink effects at a given expectile, and its limiting distributions are derived under both the null and the local alternative hypotheses. Simulation studies show that the proposed estimators and test have desirable finite sample performance in both homoscedastic and heteroscedastic errors. An application to the Nation Growth, Lung and Health Study dataset is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.