Abstract
In this paper, we propose improved statistical inference and variable selection methods for generalized linear models based on empirical likelihood approach that accommodates both the within-subject correlations and nonignorable dropouts. We first apply the generalized method of moments to estimate the parameters in the nonignorable dropout propensity based on an instrument. The inverse probability weighting is applied to obtain the bias-corrected generalized estimating equations (GEEs), and then we borrow the idea of quadratic inference function and hybrid GEE to construct the empirical likelihood procedures for longitudinal data with nonignorable dropouts, respectively. Two different classes of estimators and their confidence regions are derived. Further, the penalized EL method and algorithm for variable selection are investigated. The finite-sample performance of the proposed estimators is studied through simulation, and an application to HIV-CD4 data set is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.