Abstract

The objective of this study was to estimate the dispersal rate in an organism assumed to be confined to tree stands with unbroken continuity. We used the lichen-forming ascomycete Cliostomum corrugatum, which is largely confined to old oak stands. Five populations, with pairwise distances ranging from 6.5 to 83 km, were sampled in Östergötland, south-eastern Sweden. DNA sequence data from an intron in the small subunit nuclear ribosomal RNA gene was obtained from 85 samples. Nearly all molecular variance (99.6%) was found within populations and there were no signs of isolation-by-distance. The absolute number of immigrants per population per generation (estimated to 30 years), inferred by Bayesian MCMC, was found to be between 1 and 5. Altogether, evidence suggests abundant gene flow in the history of our sample. A simulation procedure demonstrated that we cannot know whether effective dispersal is ongoing or if it ceased at the time when oaks started to decrease dramatically around 400 years BP. However, a scenario where effective dispersal ceased already at the time when the postglacial reinvasion of oak had reached the region around 6000 years BP is unlikely. Vegetation history suggests that the habitat of C. corrugatum was patchily distributed in the landscape since the early Holocene. Combined with the high dispersal rate estimate, this suggests that the species has been successful at frequently crossing distances of at least several kilometres and possibly that it has primarily been limited by the availability of habitat rather than by dispersal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call