Abstract

A procedure is described to estimate the pure component spectra of mixtures from only a pair of available spectra even when there are more than two component species present in the system. In contrast, traditional multivariate curve resolution (MCR) technique cannot be used for such a case. The method relies on the use of two-trace two-dimensional (2T2D) correlation spectroscopy. Asynchronous 2T2D spectrum is used to identify the characteristic bands most strongly associated with the individual mixture component species. Correlation coefficients derived from the synchronous 2T2D spectrum are used to obtain a set of correlative filtering functions to distribute the spectral intensity of the average spectrum among the estimates of the pure component spectra. Efficacy of the method was demonstrated using a pair of ATR IR spectra obtained for two solution mixtures containing three main ingredients with very similar compositions. Relatively congested and overlapped spectral region was used first for the demonstration, and reasonable resolution was accomplished yielding a set of the estimates of pure component spectra with most of the expected pertinent features included. The analysis was then extended to a broader spectral region containing well-isolated spectral signatures of individual components for positive validation. While traditional MCR technique seems to perform better with a large number of spectra, this technique can be effectively used in conjunction with MCR to improve its stability and performance, especially under some challenging conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.