Abstract
Peak Group Analysis (PGA) is a multivariate curve resolution technique that attempts to extract single pure component spectra from time series of spectral mixture data. It requires that the mixture spectra consist of relatively sharp peaks, as is typical in IR and Raman spectroscopy. PGA aims to construct from individual peaks the associated pure component spectra in the form of nonnegative linear combinations of the right singular vectors of the spectral data matrix.This work presents an automated PGA (autoPGA) that starts with upstream peak detection applied to time series of spectra, combining different window-based peak detection techniques with balanced peak acceptance criteria and peak grouping to deal with repeated detections. The next step is a single-spectrum-oriented PGA analysis. This is followed by a downstream correlation analysis to identify pure component spectra that occur multiple times. AutoPGA provides a complete pure component factorization of the matrix of measured data. The algorithm is applied to FT-IR data sets on various rhodium carbonyl complexes and from an equilibrium of iridium complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.