Abstract

Network equilibrium models have been extensively used for decades. The rationale for using equilibrium as a predictor is essentially that (i) a unique and globally stable equilibrium point is guaranteed to exist and (ii) the transient period over which a system adapts to a change is sufficiently short in time that it can be neglected. However, we find transport problems without a unique and stable equilibrium in the literature. Even if it exists, it is not certain how long it takes for the system to reach an equilibrium point after an external shock onto the transport system, such as infrastructure improvement and damage by a disaster. The day-to-day adjustment process must be analysed to answer these questions. Among several models, the Markov chain approach has been claimed to be the most general and flexible. It is also advantageous as a unique stationary distribution is guaranteed in mild conditions, even when a unique and stable equilibrium does not exist. In the present paper, we first aim to develop a methodology for estimating the Markov chain mixing time (MCMT), a worst-case assessment of the convergence time of a Markov chain to its stationary distribution. The main tools are coupling and aggregation, which enable us to analyse MCMTs in large-scale transport systems. Our second aim is to conduct a preliminary examination of the relationships between MCMTs and critical properties of the system, such as travellers’ sensitivity to differences in travel cost and the frequency of travellers’ revisions of their choices. Through analytical and numerical analyses, we found key relationships in a few transport problems, including those without a unique and stable equilibrium. We also showed that the proposed method, combined with coupling and aggregation, can be applied to larger transport models. History: This paper has been accepted for the Transportation Science Special Issue on the 25th International Symposium on Transportation and Traffic Theory. Funding: This study was financially supported by the Japan Society for the Promotion of Science [Grant-in-Aid 20H00265]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2024.0523 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.