Abstract

<!-- *** Custom HTML *** --> The antivoter model is a Markov chain on regular graphs which has a unique stationary distribution, but is not reversible. This makes the stationary distribution difficult to describe. Despite the fact that in general we know nothing about the stationary distribution other than it exists and is unique, we present a method for sampling exactly from this distribution. The method has running time $O(n^3 r / c)$, where $n$ is the number of nodes in the graph, $c$ is the size of the minimum cut in the graph, and $r$ is the degree of each node in the graph. We also show that the original chain has $O(n^3 r /c)$ mixing time. For the antivoter model on the complete graph we derive a closed form solution for the stationary distribution. Moreover we bound the total variation distance between the stationary distribution for the antivoter model on a multipartite graph and the stationary distribution on the complete graph, using Stein's method. Finally, we present computational experiments comparing the empirical Stein's method for estimating the stationary distribution to the classical frequency estimate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.