Abstract
AbstractThe billiard flow in the plane has a simple geometric definition; the movement along straight lines of points except where elastic reflections are made with the boundary of the billiard domain. We consider a class of open billiards, where the billiard domain is unbounded, and the boundary is that of a finite number of strictly convex obstacles. We estimate the Hausdorff dimension of the nonwandering set M0 of the discrete time billiard ball map, which is known to be a Cantor set and the largest invariant set. Under certain conditions on the obstacles, we use a well-known coding ofM0 [Mor91] and estimates using convex fronts related to the derivative of the billiard ball map [Sto03] to estimate the Hausdorff dimension of local unstable sets. Consideration of the local product structure then yields the desired estimates, which provide asymptotic bounds on the Hausdorff dimension's convergence to zero as the obstacles are separated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.