Abstract

This paper is devoted to the effective stability estimates (of Nekhoroshev’s type) of the billiard flow for strictly convex bounded domains with analytic boundaries in any dimensions. The main result is that any billiard trajectory with initial data which are δ - close to the glancing manifold remains close to the glancing manifold in an exponentially large time interval with respect to 1/δ. The proof is based on a normal form of the billiard ball map in Gevrey classes. More generally, we prove effective stability estimates for the billiard ball map associated with any pair of analytic glancing hypersurfaces with a compact glancing manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.