Abstract

Simple SummaryHuman patients affected by chronic kidney disease reported alterations of serum amino acid pattern, as a consequence of several metabolic complications of the renal disease. Our study aimed to evaluate possible differences in serum pattern of essential and non-essential amino acids between dogs with chronic kidney disease and clinically healthy subjects. Canine chronic kidney disease resulted in an association with a significant serum deficiency of the majority of both essential and non-essential amino acids. The amino-acidic disorder was particularly evident when protein-energy wasting syndrome was present, suggesting a potential key role of pathological conditions, such as inflammation, insulin resistance, and increased protein breakdown.Abnormalities of serum amino acid profile, mostly characterized by a reduction in essential amino acids (EAAs) and an increase in non-essential amino acids (NEAAs), have been documented in human chronic kidney diseases (CKD). Amino acid disorders have been associated with CKD complications, such as metabolic acidosis and malnutrition. The aim of the present study was to evaluate EAAs and NEAAs in dogs affected by CKD at different IRIS stages, with particular reference to calcium–phosphate abnormalities, metabolic acidosis, and protein-energy wasting syndrome (PEW). Serum EAAs (L-histidine, L-isoleucine, L-leucine, L-lysine, methionine, L-phenylalanine, L-threonine, tryptophan, L-valine, and L-arginine) and serum NEAAs (L-alanine, L-aspartic acid, L-cysteine, L-glutamic acid, glycine, proline, L-serine, and L-tyrosine) were analyzed with HPLC in a group of dogs with CKD (n = 62), and in a group of healthy dogs (n = 25). CKD dogs showed significantly lower serum levels of histidine (p < 0.000), isoleucine (p < 0.000), tryptophan (p < 0.000), alanine (p = 0.013), cysteine (p < 0.000), and serine (p = 0.002), and significantly higher levels of proline (p < 0.000), leucine (p = 0.001), lysine (p < 0.000), valine (p < 0.000), arginine (p = 0.002), glutamic acid (p = 0.002), and glycine (p = 0.010) compared to healthy dogs. Dogs with abnormal calcium x phosphate values showed significantly higher levels of cysteine (p = 0.003), and lower levels of tryptophan (p = 0.025) compared to CKD dogs with normal CaxP. Dogs with metabolic acidosis showed significantly higher levels of phenylalanine (p = 0.035) and leucine (p = 0.034) compared to CKD dogs without metabolic acidosis. Dogs with PEW showed significantly lower levels for most of amino acids. In PEW dogs, the median distribution of both EAAs (p = 0.000) and NEAAs (p = 0.001) was significantly lower. The serum pattern of both EAAs and NEAAs was significantly different in CKD dogs compared to healthy dogs, although no association with the progression of the IRIS stage was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call