Abstract

The compound in solvents with triple fluorescence feature of excited state intramolecular proton transfer (ESIPT) has a broad prospect in fluorescent probes, dye sensors and molecular synthesis of photosensitive dyes. An ESIPT molecule hydroxy-bis-2,5-disubstituted-1,3,4-oxadiazoles (compound 1a) emits two fluorescence peaks in dichloromethane (DCM) and three fluorescence peaks in dimethyl sulfoxide (DMSO). [Dyes and Pigments 197 (2022) 109927]. Two longer peaks were attributed to enol and keto emission in both solvents and the shortest third peak in DMSO was just attributed simply. However, there is a significant difference in proton affinity between DCM and DMSO solvents which has influence on the position of emission peaks. Therefore, the correctness of this conclusion needs to be further verified. In this research, density functional theory and time-dependent density functional theory method are used to explore ESIPT process. Optimized structures indicate ESIPT occurs through molecular bridge assisted by DMSO. The calculated fluorescence spectra demonstrate two peaks indeed originated from enol and keto in DCM, while interestingly three peaks are originated from enol, keto and intermediate in DMSO. Infrared spectrum, electrostatic potential and potential energy curves further prove existence of three structures. We reveal the mechanisms that compound 1a molecule occurs ESIPT in DCM solvent and undergoes an ESIPT through assisted by DMSO molecular bridge. Additionally, three fluorescence peaks in DMSO are reattributed. Our work is expected to provide an insight for understanding intra- and intermolecular interactions and synthesis of efficient organic lighting-emitting molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call