Abstract

We have studied the spectral features and excited state intramolecular proton transfer (ESIPT) processes of 2-(2′,4′-dihydroxyphenyl)benzothiazole (OHBT) and 2-(2′-hydroxy-5′-chlorophenyl)benzothiazole (CHBT) using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). To consider the impact of solvent polarity and intermolecular hydrogen bond (H-bond) on the ESIPT behavior and photophysical properties, four solvents including toluene (TL), tetrahydrofuran (THF), methanol (MeOH) and dimethylsulfoxide (DMSO) were used. The simulated absorption and fluorescence wavelengths of OHBT and CHBT are well consistent with the experimental values. According to the results of structures, electron density and infrared (IR) vibrational frequencies, we found that the intramolecular H-bonds in OHBT/CHBT and OHBT-MeOH/CHBT-MeOH are strengthened in the first singlet excited state (S1), which will be benefical to the ESIPT process. The potential energy curves (PECs) verified that the ESIPT processes in OHBT/CHBT and OHBT-MeOH/CHBT-MeOH can take place much easier because of their lower energy barrier. The influences of solvent polarity on ESIPT behaviors and photophysical properties of OHBT and CHBT are summarized below. As the solvent polarity becomes stronger from TL to DMSO, the energy gaps enlarges a little, the maximum absorption and fluorescence peaks at normal form red-shift slightly, and the strengths of H-bond in S1 state become weaker, which makes the ESIPT process occur much harder. The formation of intermolecular H-bond between OHBT/CHBT and MeOH is conducive to promote the ESIPT process of OHBT/CHBT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call