Abstract

Modulation equations play an essential role in the understanding of complicated dynamical systems near the threshold of instability. Here we look at systems defined over domains with one unbounded direction and show that the Ginzburg-Landau equation dominates the dynamics of the full problem, locally, at least over a long time-scale. As an application of our approximation theorem we look here at Benard's problem. The method we use involves a careful handling of critical modes in the Fourier-transformed problem and an estimate of Gronwall's type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.