Abstract

The nonlinear diffusion equationut=[f(u)g(ux)] arises in recent models of turbulent transport and of stress dissipation in rock blasting. A Lie point symmetry analysis produces many similarity reductions of exponential and power-law forms, and reveals that for all choices off the equation is always integrable wheng(ux)=1/ux. We identify the functionsf(u) which guarantee equivalence to the linear heat equation. For all other choices off, the linear canonical form leads to a self-adjoint differential equation by separation of variablesx andt. We construct a number of explicit solutions with simple boundary conditions, which illustrate behavior in the vicinity of the degenerate region withux=∞. If zero flux and constant concentration are maintained on free boundaries, then steep concentration gradients may evolve from smooth initial conditions. For other boundary conditions, unlike the examples of strong degeneracy, smoothing will occur at initial step discontinuities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.