Abstract

Modulation equations play an essential role in the understanding of complicated systems near the threshold of instability. For scalar parabolic equations for which instability occurs at nonzero wavelength, we show that the associated Ginzburg-Landau equation dominates the dynamics of the nonlinear problem locally, at least over a long timescale. We develop a method which is simpler than previous ones and allows initial conditions of lower regularity. It involves a careful handling of the critical modes in the Fourier-transformed problem and an estimate of Gronwall's type. As an example, we treat the Kuramoto-Shivashinsky equation. Moreover, the method enables us to handle vector-valued problems [see G. Schneider (1992)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.