Abstract

A complex study of the influence of nanoscale InAs inserts with thicknesses from 1.7 to 3.0 nm introduced into In0.53Ga0.47As quantum wells (QWs) on the structural and electrical properties of In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As heterostructures with one-sided δ-Si-doping has been performed. The structural quality of a combined QW was investigated by transmission electron microscopy. A correlation between the electron mobility in QW with the thickness of InAs insert and the technology of its fabrication is established. Specific features of the InP(substrate)/InAlAs(buffer) interface are investigated by transmission electron microscopy and photoluminescence spectroscopy. A relationship between the energy positions of the peak in the photoluminescence spectra in the range of photon energies 1.24 eV < ħω < 1.38 eV, which is due to the electronic transitions at the InP/InAlAs interface, and the structural features revealed in the interface region is established. It is found that an additional QW is unintentionally formed at the InP/InAlAs interface; the parameters of this QW depend on the heterostructure growth technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call