Abstract

The specific features of the photoluminescence and the electrical properties of doped nanoheterostructures containing a composite InAlAs/InGaAs/InAlAs quantum well with a thin InAs insert in the middle are studied. The insert thickness is varied in the range from 1.7 to 3.0 nm. It is established that the position of the peaks in the photoluminescence spectra in the photon energy range 0.6–0.8 eV correlates with the InAs insert thickness. Simulation of the band structure shows that the experimentally observed variation in the energy of optical transitions is associated with lowering of the energy of electron and hole states in the quantum well with increasing insert thickness. In the photon energy range 1.24–1.38 eV, optical transitions in the region of the InAlAs buffer-InP substrate interface are observed. The signal photon energy and intensity depend on the features of the formation of this heterointerface and on the conditions of substrate annealing. It is conceived that this is due to the formation of a transition region between the InAlAs buffer and the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.